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THE EULERIAN TIME CORRELATION FUNCTION IN

HOMOGENEOUS ISOTROPIC TURBULENCE

R. RUBINSTEIN�
AND GUOWEI HEy

Abstract. Two general models are proposed for the Eulerian time correlation function in homogeneous

isotropic turbulence. The �rst is based on continued fraction approximations to its Laplace transform,

and the second is based on random sweeping by a possibly non-Gaussian velocity �eld. Both models can

give reasonable quantitative agreement with DNS data for moderate time separations over which the time

correlation functions at di�erent wavenumbers exhibit a common self-similar form.

Key words. time correlation, turbulence, sub-Gaussian

Subject classi�cation. Fluid Mechanics

1. Introduction. The analysis of time correlations in turbulence begins with Kraichnan's explanation

[1] of the inconsistency of Eulerian turbulence closures with Kolmogorov scaling. This work revealed that

the dynamic decorrelation mechanisms are distinct for Eulerian and Lagrangian time correlations and that

energy transfer in turbulence must be analyzed in terms of Lagrangian quantities.

Since Lagrangian time correlations arise both in the problem of energy transfer in turbulence and in the

equally fundamental problem of passive scalar di�usion, they would seem to be more important. Nevertheless,

Eulerian properties are relevant in a broad class of problems in which turbulence acts as a time-dependent

random medium and properties at �xed locations in space are required. Wave scattering by turbulence is

one example; provided the turbulence is not simply frozen during the passage of the wave, analysis of this

problem will depend on Eulerian time correlations.

Sound radiation by turbulence is another problem in which Eulerian correlations might be relevant. As

applied to homogeneous, isotropic turbulence, Lighthill's theory [2] appears to treat �xed regions of space,

not moving volumes of uid, as sound sources. Since the space-time properties of �xed spatial volumes

determine the sound source, Eulerian time correlations are relevant. Since the observer de�nes a coordinate

system at rest, Eulerian time correlations are certainly consistent with Lighthill's theory. More generally,

Kaneda has suggested that whereas energy transfer in turbulence depends on Lagrangian time correlations,

momentum transfer depends on Eulerian time correlations, which also suggests the relevance of Eulerian

time correlations to sound radiation.

The Eulerian time correlation function  (r; t) is de�ned in homogeneous, isotropic turbulence by

hu(x; t) � u(x+ r; t+ �)i = Q(r)  (r; �)(1.1)

where

Q(r) = hu(x; t) � u(x+ r; t)i(1.2)

is the single-time correlation function.

�Computational Modeling and Simulation Branch, Mail Stop 128, NASA Langley Research Center, Hampton, VA 23681-2199

(email: r.rubinstein@larc.nasa.gov).
yICASE, Mail Stop 132C, NASA Langley Research Center, Hampton, VA 23681-2199 (email: hgw@icase.edu or

guoweihe@yahoo.com). This research was supported by the National Aeronautics and Space Administration under NASA

Contract No. NAS1-97046 while the author was in residence at ICASE, NASA Langley Research Center, Hampton, VA 23681.
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The basic fact about Eulerian time correlations is the similarity form for inertial range separations [1, 3]

 (r; �) =  

�
V �

r

�
(1.3)

where

V 2 = hu(x; t) � u(x; t)i(1.4)

is the rms velocity uctuation.
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Fig. 1.1. Time correlation function at various wavenumbers plotted as functions of the similarity variable � = V k� . The

thick curve with the lowest minimum corresponds to a low wavenumber; increasing wavenumber corresponds to increasing  (�)

at � = 4.

The validity of the similarity form Eq. (1.3) has been demonstrated repeatedly in the literature [3]. We

con�rm this similarity form with new observation summarized in Fig. 1.1, which shows the time correlation

function in Fourier space,  (k; �) for various wavenumbers k, plotted as functions of the similarity variable

V k� . The data is taken from He et al. [4]. The time correlations for all wavenumbers collapse very well for

time separations V k� < 3. At longer times, the time correlation functions cross zero and oscillate. These

features appear to be quite robust, although our data is not su�ciently well resolved to draw de�nitive

conclusions at very long time separations. This behavior is somewhat in contrast to the data of [5], however,

we provisionally assume it is correct. Although the correlation functions at di�erent wavenumbers no longer

collapse so well when V k� > 3, the time correlation functions for wavenumbers in the range 10 < k < 35,

appear to exhibit a common similarity form even in the neighbourhood of the zero-crossing. We tentatively

identify these wavenumbers with an inertial range, although the relatively low-resolution (1283) DNS does

not contain an extended region of unambiguous Kolmogorov scaling.

In this paper, we explore some possible analytical forms for the function  . Apart from its purely

theoretical interest, there are applications in which the precise analytical form of the time correlation is

important. In astrophysical applications [6], the total acoustic radiation from stars depends surprisingly

sensitively on the assumptions made about the time correlation function. A similar sensitivity to the time

correlation function was found by Bertoglio et al. [7].
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2. Continued fraction methods. Kaneda et al. [5] curve�t turbulent time correlation functions by

rational functions, using the Taylor series approximations and the Pad�e table. Thus, if for �xed k, we write

 (k; �) = !0(k) +
1

2!
!2(k)�

2 +
1

4!
!4(k)�

4 + � � �(2.1)

then the Taylor coe�cients are evaluated as

!0(k) =  (k; 0) = 1

!2(k) =
d2 

dt2
(k; 0) = �h _u(k; t) � _u(�k; t)ihu(k; t)u(k; t)i(2.2)

!4(k) =
d4 

dt4
(k; 0) = +

h�u(k; t)�u(�k; t)i
hu(k; t)u(k; t)i

� � �

The time derivatives on the right side can be replaced by single-time moments of the velocity �eld by applying

the Navier-Stokes equations. The time derivative of order n then is given in terms of a single-time moment

of order 2n. This fact connects the time correlation function to intermittency [8].

This method of calculation leads to very good results. Here, a di�erent method is followed, which leads

to a rational approximation of the Laplace transform of the correlation function [9]. In molecular hydrody-

namics, the correlation function is expressed as a continued fraction through the Zwanzig-Mori projection

operator formalism [10]. Recently, this formalism has been generalized to non-equilibrium conditions by [8].

However, we can also give an elementary account as follows. De�ne the Laplace transform of the time

correlation function as usual by

 (s) =

Z
1

0

d� e�s� (�)(2.3)

and assume the continued fraction representation

 (s) =
a0
s+

a2
s+

a4
s+

a6
s+

� � �(2.4)

and the Taylor series expansion Eq. (2.1). Substituting Eq. (2.1) in Eq. (2.3),

 (s) =
1

s
+
!2
s3

+
!4
s5

+ � � �(2.5)

Equating the expressions for  (s) Eqs. (2.4) and (2.5), the Euclidean algorithm gives

a2 = �!2
a4 = �!4

!2
+ !2(2.6)

a6 = �!4 � !6=!2
!2 � !4=!2

+
!4
!2

An obvious approximation method is �nite truncation of this continued fraction [10]. We obtain in this way

�rst the the one-parameter or Markovian model

 (�) = e�!�(2.7)

and at the next order, the two-parameter model

 (�) =
�
cos ~!� +

!

2~!
sin ~!�

�
e�!�=2(2.8)
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In Eqs. (2.7) and (2.8), � = V k� , the similarity variable corresponding to Eq. (1.3)

It should be stressed that an assumption of complete similarity is made in writing Eqs. (2.7) and (2.8),

namely that

!2n � (V k)2n(2.9)

This is an assumption of `normal scaling' for the Taylor coe�cients; in view of Eqs. (2.6), it also implies

normal scaling of the coe�cients in the continued fraction expansion Eq. (2.4). This assumption may be

satisfactory for Fourier coe�cients [11].

The Markovian model is well-known to be incorrect, because it does not have zero slope at � = 0. But

Fig. 1.1 also suggests that the two-parameter model is qualitatively inadequate, because it predicts equally

spaced zeroes of the correlation function. We could proceed to the general three-parameter model, but prefer

to consider a special form of this model [10] de�ned in terms of the memory function

K(�) = ~!2(1 + !�)e�!�(2.10)

by the equation

_ (�) +

Z �

0

d� 0K(� � � 0) (� 0) = 0(2.11)

Eq. (2.11) is equivalent to a system of ordinary di�erential equations, expressed in terms of Laplace trans-

forms as

s (s) + ~!2�1(s) = 1

s�1(s) + !�1(s)�  (s)� !�2(s) = 0(2.12)

s�2(s) + !�2(s)�  (s) = 0

which proves more convenient for numerical evaluation.

Since this is a two-parameter model, it is de�ned by two properties of the correlation function, which

we take to be the microscale

�2� = � 1
� (0)

(2.13)

and the integral scale

�M =

Z
1

0

dt  (t)(2.14)

The connection between these quantities and the model parameters is

~!2 =
1

��
(2.15)

2
~!2

!
=

1

�M
(2.16)

The generality of this class of functions is evident from the equivalent system of equations Eq. (2.12),

which shows that pure exponential decay occurs in the limit ~! � 0 and that oscillations occur in the limit

! � 0. Intermediate behavior can be anticipated between these limits and is con�rmed in Fig. 2.1. Trial and
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Fig. 2.1. The two-parameter correlation function of Eqs. (2.10){(2.11) plotted for various values of the ratio r = ~!=!:

r = 0 (solid), r = 1 (dashed), r = 10 (dot-dash). As r increases from zero, the function goes from pure decay to pure oscillation.
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Fig. 2.2. The correlation function Eqs. (2.10){(2.11) �t to the data of Fig. 1.1. Symbols are DNS, the solid line is the

curve�t, and the dashed line is the best squared exponential curve�t. The �tting was done by trial and error. The region of

negative values of the correlation functions is reproduced well by the empirical function.

error adjustment of the parameters led to an approximation to the measured Eulerian correlation functions

which is shown in Fig. 2.2. We emphasize that the relations Eqs. (2.15){(2.16) were not used to obtain the

curve�t.

This result shows that a good �t to the time correlation function can be obtained in principle knowing

only the microscale and integral scale. Nevertheless, the fact remains that neither the equations relating the

Taylor coe�cients and the model parameters Eq. (2.6) nor the system of ordinary di�erential equations for

the correlation function Eq. (2.12) has much apparent physical signi�cance.

3. The random sweeping model. An important theoretical model for the Eulerian time correlation

function is provided by the direct interaction approximation [12]. However, the functional form predicted,

 (�) � J1(�)=� is unrealistically oscillatory.

Another approximation for Eulerian time correlations is based on Kraichnan's model problem for the
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random sweeping e�ect [1]. In this problem, a �xed frozen random velocity �eld u(x) is advected by a

random constant velocity �eld v. The result is the time dependent �eld de�ned by

_u(k; t) = �ik � vu(k; t)(3.1)

where

u(k; 0) = u(k)(3.2)

so that

u(k; t) = exp(iv � kt)u(k)(3.3)

If v is Gaussian, then

 (�) = hexp(iv � k�)i = exp(�V 2�2k2=2)(3.4)

where

V 2 = hv � vi(3.5)

The time correlations of the actual turbulent velocity �eld are approximated by the (ensemble-averaged)

time correlations of the velocity �eld de�ned in Eq. (3.3) The assumption underlying this model is that the

large scales responsible for sweeping in the actual velocity �eld can be considered independent of the small

scales at which the time correlation is evaluated. The �rst equality in Eq. (3.4) shows that the pdf is related

to the frequency spectrum.

It is evident that this model will not provide a very good �t to the data because the measured correlation

functions all take negative values. We consider how this model might be generalized to obtain better

agreement. If the pdf of v is non-Gaussian, then certainly the second equality in Eq. (3.4) does not apply.

There is considerable recent work [13, 14] suggesting that the single-point pdf of velocity uctuations is not

exactly Gaussian, but is instead sub-Gaussian: that is, the tails are lighter than Gaussian, in contrast to

familiar `intermittency' behavior.

A simple sub-Gaussian is de�ned by truncating a Gaussian,

p(v) =

(
b exp(�v2=2V 2) if v � a

0 if v > a
(3.6)

where the standard deviation / V de�nes the relevant sweeping velocity. Limiting cases of the corresponding

correlation function are the squared exponential Eq. (3.4) when a =1 and

 (�) =
sin(�)

�
(3.7)

when a = 0. In general, this correlation function satis�es the inhomogeneous di�erential equation

d 

d�
+

1

2
� = ��a2e�a2 d

d�

sin(a�)

a�
(3.8)

Fig. 3.1 plots this correlation function for various values of the parameter a.

Although these correlation functions look promising, there is little doubt that the underlying model for

the pdf is somewhat arti�cial. Falkovich and Lebedev [13] have attempted to compute the tail of the single-

point velocity pdf. The tail is found to depend on the forcing statistics, and is therefore not universal. Simply
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to illustrate some possibilities, we follow this article and consider a non-Gaussian pdf with an exp(�v4) tail.
Suppose, to have consistency with near Gaussian behavior for small deviations from zero, that

p(v) = a exp[�(v2 + �v4)=2V 2](3.9)

Then  (t) satis�es

�
d

d�

�
d2 

d�2
+

2

�

d 

d�

�
� 1

2

d 

d�
� 1

4
� = 0(3.10)

Note that when � = 0, the time correlation function reduces correctly to the squared exponential form

corresponding to a Gaussian-distributed sweeping velocity. Two typical forms of this function are shown in

Fig. (3.2).
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Fig. 3.1. The one-parameter correlation function de�ned by Eq. (3.8) plotted for various values of the parameter a:

a = 100 (solid), a = 10 (dashed), a = 1 (dot-dash). The limiting cases are  (�) = exp(��2) when a =1 and  (�) = sin(�)=�

when a = 0.

We note the existence of asymptotic solutions to Eq. (3.10)

 (�) � cos(
p
3�4=3=2 + �) exp(��4=3=2)(3.11)

This solution indicates that the correlation function falls o� considerably more slowly than exp(��2) and
that the correlation function crosses zero with increasing frequency as � ! 1. In this respect, the simpler

model Eq. (3.6) seems more realistic, but the fact is that the available data do not rule Eq. (3.11) out.

In Fig. (3.3), this function is compared to the empirical distribution corresponding to a variety of

wavenumbers k. Again, the curve�tting was done by trial and error, with no attempt to determine the best

�t from numerical properties of the measured correlation function. A best �t squared exponential is included

for comparison. This �gure shows that the low k correlation function is �t remarkably well by this type of

function.

Despite the good �t for the low wavenumber case, these sub-Gaussian models are generally too `elastic'

in comparison to the data: the negative amplitude after the �rst zero crossing tends to be larger than the

data, and it tends to recover too quickly. This raises the question of the accuracy of the data in this range.

More accurate measurements should be made in order to make more de�nitive comparisons.
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Fig. 3.2. The one-parameter correlation function de�ned by Eq. (3.10) plotted for two values of the parameter �: � = 100

(solid), � = 10 (dotted).
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Fig. 3.3. The correlation function Eq. (3.10) �t to the data of Fig. 1.1. Symbols are DNS, the solid line is the curve�t,

and the dashed line is the best Gaussian (squared exponential) curve�t. The graph on the left corresponds to relatively high

wavenumbers, the graph on the right to a low wavenumber. The Gaussian provides a good �t to the high wavenumber data,

but at low wavenumber, the sub-Gaussian provides much better agreement.

4. Conclusions. The collapse of the Eulerian time correlation function to a self-similar form based on

the sweeping velocity is con�rmed by DNS data. For moderate time-separations, the collapse is excellent

for all wavenumbers, and continues for larger time separations for inertial range modes. Models for the time

correlation function based on continued fraction approximation and on a random sweeping model can both

give satisfactory agreement with the data. More accurate measurements of the time correlations at large

time separation will be required to re�ne these models.
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